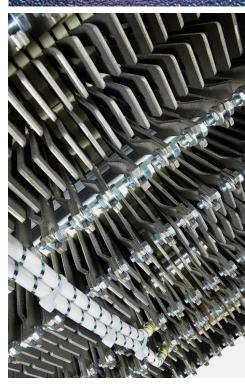
# GINO AG


## Elektrotechnische Fabrik











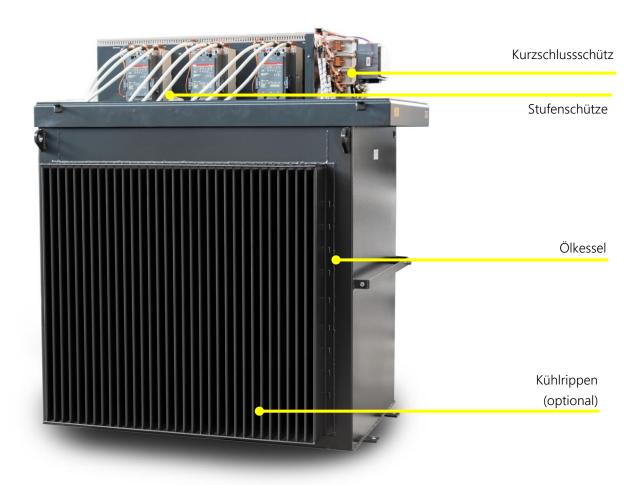


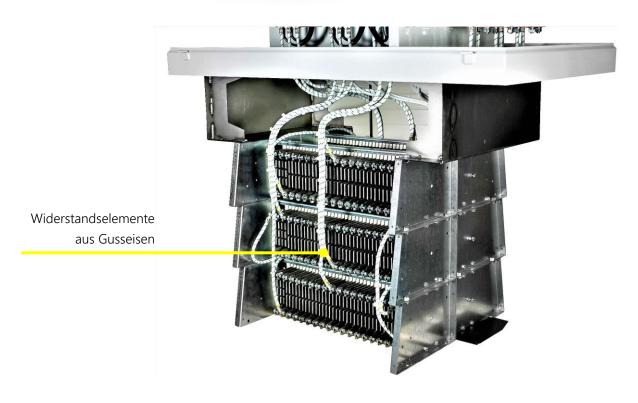
#### 1 Allgemeine Informationen

3PA3 Anlasser sind schützgesteuerte Widerstandsanlasser mit 3PR3- Gusseisenwiderständen. GINO übernahm die 3PA3- Baureihe von der Siemens AG im Jahre 2000 und hat das Produkt stetig verbessert, um es an die heutigen Anforderungen anzupassen.

Die ölgekühlten Anlasser speichern die im Anlassvorgang entstehende Verlustwärme und geben sie über ihre Tankoberfläche langsam wieder ab. Sie eignen sich besonders für Antriebe mit hoher Leistung in schwierigen Umgebungsbedingungen. Die Widerstandsänderung in der Rotorschaltung des Schleifringläufermotors erfolgt durch das Kurzschließen von Teilwiderständen mittels Leistungsschützen. Als Widerstands-medium dienen Gusselemente. Das mineralische Öl wirkt als Energiespeicher und Isoliermedium. Die Bauweise kombiniert die Vorteile des Widerstandsanlassers mit denen eines preisgünstigen Energieträgers (Öl). Gleichzeitig garantieren robuste Leistungsschütze und die hohe Schutzklasse des Anlassers eine hohe Betriebssicherheit und eine lange Lebensdauer bei geringem Wartungsaufwand.

Vorteile der Ölanlasser von der GINO AG auf einen Rlick:


- Kompakte Bauform
- Schutzart: IP 54
- Weltweite Inbetriebnahme und Servicedienstleistungen
- Verwendung von Gusswiderständen mit hohem Energiespeichervermögen
- Geeignet für schmutzige Umgebungsbedingungen
- Geringer Wartungsaufwand
- Hohe Betriebssicherheit


Anwendungsbereiche in denen Ölanlasser verwendet werden:

- Förderbänder
- Industrieventilatoren
- Kugelmühlen
- Zementmühlen
- Schredder
- Pumpstationen



## 2 Design Übersicht





#### 3 System Information

Standard Ausführung

• Gusswiderstandselemente Typ 3PR3

• Lackierung RAL 7016

• Eaton easyE4 PLC Steuerung mit Modbus- Schnittstelle

• Hilfsklemmen für kundenseitige Steuerung

Temperaturüberwachung mit Abschaltung bei 130°C, Warnung bei 100°C

• Steuerspannung 230 V – 50/60 Hz

ABB / Siemens Schützkonfiguration"

Optische Ölstandskontrolle

Schutzart IP 54 nach DIN EN 60529:2014-09

Umgebungstemperatur 0 °C bis +40 °C, auf Anfrage sind auch andere Temperaturbereiche

möglich

Betriebshöhe Bis 1000m über dem Meeresspiegel, größere Höhe auf Anfrage möglich

Verwendung von säurefreien Isolierölen nach DIN EN 60422:2013-11,
VDE 0370-2:2013-11, IEC 60422 (2013)

• Ölfüllung nicht im Lieferumfang enthalten

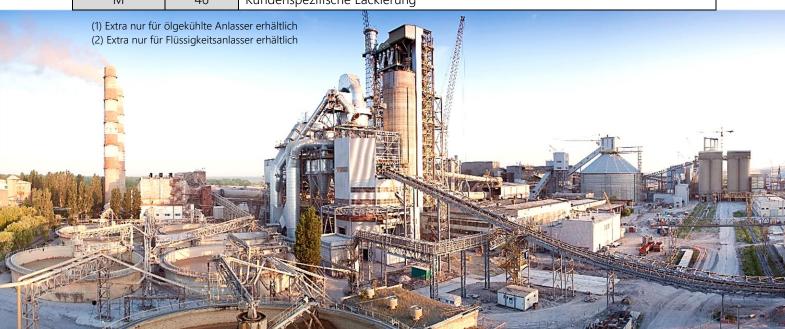
Eingehaltene NormenDIN/ VDE 0101/ 0111/ 0141

• DIN EN 60529

• 2014/35/EU (Niederspannungsregularien)

IEC 60947-4-1

#### 4 Technische Daten


Öl

|       | Geschätzte Motorleistung |        |          |            | Rotorstrom |      |                        |                         |  |
|-------|--------------------------|--------|----------|------------|------------|------|------------------------|-------------------------|--|
| Model | Ohne<br>Last             | Lüfter | Volllast | Schwerlast | Тур        |      | Max. Rotor<br>Spannung | Max. Anlas-<br>senergie |  |
|       | f=0,7 <sup>(1)</sup>     | f=1,0  | f=1,4    | f=2,0      | 1          | 2    |                        |                         |  |
|       | [kW]                     | [kW]   | [kW]     | [kW]       | [A]        | [A]  | [V]                    | [kJ]                    |  |
| 01    | 200                      | 140    | 100      | 70         | 150        | 250  | 2200                   | 9521                    |  |
| 02    | 450                      | 315    | 225      | 155        | 250        | 450  | 2200                   | 23010                   |  |
| 03    | 640                      | 450    | 320      | 225        | 250        | 450  | 2200                   | 29357                   |  |
| 04    | 900                      | 630    | 450      | 315        | 450        | 630  | 3000                   | 32531                   |  |
| 05    | 1260                     | 880    | 630      | 440        | 450        | 630  | 3000                   | 55541                   |  |
| 06    | 1800                     | 1250   | 900      | 625        | 630        | 1100 | 3000                   | 79344                   |  |
| 07    | 2500                     | 1750   | 1250     | 875        | 630        | 1100 | 3000                   | 121396                  |  |
| 08    | 3600                     | 2500   | 1800     | 1250       | 1100       | 1600 | 3000                   | 170590                  |  |
| 09    | 5000                     | 3500   | 2500     | 1750       | 1100       | 1600 | 3000                   | 251520                  |  |
| 10    | 6400                     | 4500   | 3200     | 2250       | 1100       | 1600 | 3000                   | 323724                  |  |

<sup>(1)</sup> Anlassschwere (für mehr Informationen siehe Kapitel 6)

## 5 Extras

| Model | Nr. | Beschreibung                                             |
|-------|-----|----------------------------------------------------------|
| М     | 10  | Abweichende Versorgungsspannung                          |
| М     | 11  | Örtliche Steuerung                                       |
| М     | 12  | Steuerung der Bürstenabhebevorrichtung                   |
| М     | 13  | Abweichende Industrie-Busanbindung                       |
| М     | 14  | Abweichendes PLC System                                  |
| М     | 15  | HMI Touch Panel (2)                                      |
| М     | 16  | Zeitrelaissteuerung <sup>(1)</sup>                       |
| М     | 20  | Elektronische Blockierüberwachung                        |
| М     | 21  | Schaltschrankheizung (kombiniert)                        |
| М     | 22  | Hochspannungsausführung                                  |
| М     | 23  | Hochstromausführung <sup>(2)</sup>                       |
| М     | 24  | Rotorspannungsmessung                                    |
| М     | 25  | Rotorstrommessung                                        |
| М     | 26  | Kundenspezifische Rotoranbindung $\Delta$ <sup>(2)</sup> |
| М     | 27  | Kundenspezifische Rotoranbindung Y (2)                   |
| М     | 30  | Elektronische Füllstandsüberwachung (Warnung/Abschalten) |
| М     | 31  | Elektronische Füllstandsüberwachung (kontinuierlich)     |
| М     | 32  | Kontinuierliche Temperaturmessung                        |
| М     | 33  | Leitwertmessung (2)                                      |
| М     | 40  | Wärmetauscher                                            |
| М     | 41  | Kühlrippen (1)                                           |
| М     | 42  | Umwälzpumpe <sup>(2)</sup>                               |
| М     | 43  | Elektorlytmischer <sup>(2)</sup>                         |
| М     | 44  | Elektrolytheizung <sup>(2)</sup>                         |
| М     | 45  | Kabelabdeckung IP55 <sup>(1)</sup>                       |
| М     | 46  | Kundenspezifische Lackierung                             |



#### 6 Required Technical Data

#### Leistung (P, kW)

Der maßgebliche Auswahlfaktor für die Größe des Flüssigkeitsanlassers ist die Motorleistung.

#### Rotorspannung (U<sub>2</sub>, V)

Wird im Datenblatt des Motors angegeben (für die Auslegung der Schaltanlage benötigt).

#### Anlasszahl (z)

Die Anzahl z bestimmt die Anzahl der Starts aus dem Kaltzustand. Dieser liegt in der Regel zwischen 2 und 5 und zeigt die mögliche Anzahl von Starts in der Startzeit  $t_a$  in der Intervallzeit von 2x  $t_a$  bis zum Erreichen der maximalen Temperatur (85°C).

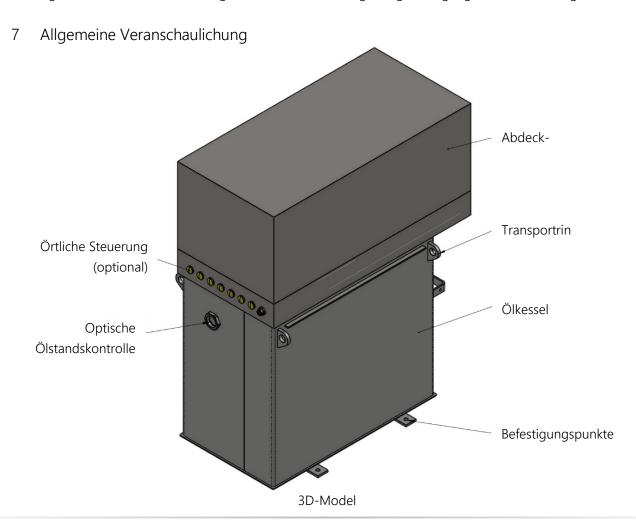
#### Startzeit (ta, s)

Die Startzeit ist der Wert für die Dauer der Start-Sequenz in Sekunden und muss vom Kunden festgelegt werden. Andernfalls verwendet die GINO AG empirisch festgelegte Standardzeiten entsprechend der Motorgröße und Antriebsanwendung.

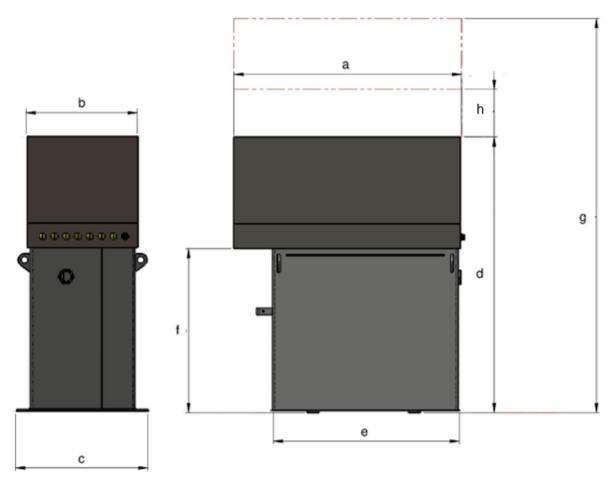
#### Rotorstrom (I<sub>2</sub>, A)

Wird im Datenblatt des Motors angegeben (für die Auslegung der Schaltanlage benötigt).

#### Anlassschwere (f)


Die Anlassschwere ist anwendungsabhängig und muss vom Kunden angegeben werden.

#### Anlasshäufigkeit pro Stunde (h)


Nach dem Start von z und dem Erreichen der max. Betriebstemperatur zeigt der Wert h an, wie viele Starts pro Stunde möglich sind. Dieser Wert muss vom Kunden festgelegt werden, da er die für die Wärmeabfuhr erforderliche Oberfläche beeinflusst.

#### Umwelteinflüsse

Für eine genaue Berechnung unter der Berücksichtigung von extremen Umständen müssen Umweltdaten (extreme Temperatur, Höhe) berücksichtigt werden. Bitte fragen Sie den Kunden nach Details zu den Umgebungsbedingungen des Aufstellungsortes.



### Maßzeichnung 3PA3



| Model | Öl<br>volumen<br>[l] | a<br>[mm] | b<br>[mm] | c<br>[mm] | d<br>[mm] | e<br>[mm] | f<br>[mm] | g<br>[mm] | h<br>[mm] |
|-------|----------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| 01    | 60                   | 766       | 322       | 380       | 900       | 524       | 474       | 1239      | 330       |
| 02    | 110                  | 1101      | 471       | 560       | 870       | 833       | 439       | 1320      | 330       |
| 03    | 185                  | 962       | 471       | 560       | 1155      | 786       | 684       | 1850      | 370       |
| 04    | 205                  | 962       | 471       | 560       | 1255      | 786       | 784       | 2050      | 370       |
| 05    | 350                  | 1169      | 732       | 836       | 1257      | 926       | 766       | 2030      | 390       |
| 06    | 500                  | 1221      | 847       | 951       | 1327      | 1026      | 836       | 2430      | 390       |
| 07    | 765                  | 1221      | 942       | 1048      | 1600      | 1043      | 1109      | 2700      | 390       |
| 08    | 1075                 | 1641      | 942       | 1048      | 1630      | 1463      | 1139      | 2760      | 390       |
| 09    | 1585                 | 1706      | 1012      | 1118      | 1940      | 1528      | 1449      | 3380      | 390       |
| 10    | 2040                 | 2136      | 1012      | 1118      | 2000      | 1958      | 1509      | 3500      | 390       |





GINO AG Elektrotechnische Fabrik Friedrich-Woehler-Str. 65 53117 Bonn Germany

info@gino.de / www.gino.de